Detection of the Radical $\mathrm{H}_{2} \mathbf{C} \dot{O}^{+}$by Electron Spin Resonance

By Shuddhodan P. Mishra and Martyn C. R. Symons*

(Department of Chemistry, The University, Leicester LE1 7RH)

Summary Exposure of solutions of formaldehyde in sulphuric acid to ${ }^{60} \mathrm{Co} \gamma$-rays at 77 K gave a radical whose e.s.r. spectrum is in accord with the structure $\mathrm{H}_{2} \mathrm{CO}^{+}$.

The iminoxyl radical, $\mathrm{H}_{2} \mathrm{CN}$, which is well characterised by e.s.r. spectroscopy, ${ }^{1}$ and is a frequently detected intermediate, ${ }^{2}$ has an electronic structure (I) in which the unpaired electron is strongly delocalised onto the two
hydrogen atoms $\left[A\left({ }^{1} \mathrm{H}\right)=87.5 \mathrm{G}\right]$. However, the isoelectronic radical $\mathrm{H}_{2} \mathrm{CO}^{+}$(II) has never been detected by e.s.r. spectroscopy. We find that a well defined, anisotropic, doublet is obtained after exposure of solutions of formaldehyde in $\mathrm{H}_{2} \mathrm{SO}_{4}$ (or $\mathrm{D}_{2} \mathrm{SO}_{4}$) to ${ }^{60} \mathrm{Co} \gamma$-rays at 77 K .

(I)

(II)

If these lines are taken as the $M_{\mathrm{I}}= \pm 1$ components of a triplet (the central region has intense components from HSO_{4} and $\cdot \mathrm{SO}_{3} \mathrm{H}$ radicals which completely conceal the $M_{\mathrm{I}}=0$ line) then the data given in the Table are obtained. These results are reasonable for $\mathrm{H}_{2} \mathrm{CO}^{+}$. The positive shift in g_{11}, although not observed for $\mathrm{H}_{2} \mathrm{C} \dot{\mathrm{N}}$, is nevertheless expected for structure (II).

	$A\left({ }^{1} \mathrm{H}\right) / \mathrm{G}^{\mathrm{a}}$				g values				
	$\\|$	\perp	iso	$\\|$	\perp	av.			
$\mathrm{H}_{2} \mathrm{CN}$	-	-	87.5	-	-	2.002			
$\mathrm{H}_{2} \mathrm{CO}^{+}$	93	89	90.3	2.025	2.000	2.017			

$$
{ }^{\mathrm{a}} \mathrm{G}=10^{-4} \mathrm{~T} .
$$

This identification is supported by the observation that on annealing above 77 K these features were lost as an asymmetric doublet characteristic of $\mathrm{H} \dot{\mathrm{C}} \mathrm{O}$ grew in with a final intensity equal to that for the ' $\mathrm{H}_{2} \dot{\mathrm{CO}}^{+}$' radical (equation 1).

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{CO}^{+}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H} \dot{\mathrm{CO}}+\mathrm{H}_{3} \mathrm{SO}_{4}^{+} \tag{1}
\end{equation*}
$$

This means that whereas HCN - is a strong base, ${ }^{3} \mathrm{H}_{2} \mathrm{CO} \dot{ }^{+}$is a strong acid even in concentrated sulphuric acid.
${ }^{1}$ E. L. Cochran, F. J. Adrian, and V. A. Bowers, J. Chem. Phys., 1962, 36, 1938.
${ }^{2}$ M. C. R. Symons, Tetrahedron, 1973, 29, 615.
${ }^{3}$ I. S. Ginns and M. C. R. Symons, J.C.S. Dalton, 1972, 185.

