
Detection of the Radical $H_2C\dot{O}^+$ by Electron Spin Resonance

By SHUDDHODAN P. MISHRA and MARTYN C. R. SYMONS* (Department of Chemistry, The University, Leicester LEI 7RH)

Summary Exposure of solutions of formaldehyde in sulphuric acid to 60 Co γ -rays at 77 K gave a radical whose e.s.r. spectrum is in accord with the structure $H_2C\dot{O}^+$.

The iminoxyl radical, $H_2C\dot{N}$, which is well characterised by e.s.r. spectroscopy,¹ and is a frequently detected intermediate,² has an electronic structure (I) in which the unpaired electron is strongly delocalised onto the two hydrogen atoms $[A(^{1}H) = 87.5 \text{ G}]$. However, the isoelectronic radical H₂CO⁺ (II) has never been detected by e.s.r. spectroscopy. We find that a well defined, anisotropic, doublet is obtained after exposure of solutions of formaldehyde in H_2SO_4 (or D_2SO_4) to ⁶⁰Co γ -rays at 77 K.

If these lines are taken as the $M_{\rm I}=\pm 1$ components of a triplet (the central region has intense components from HSO_4 and SO_3H radicals which completely conceal the $M_I = 0$ line) then the data given in the Table are obtained. These results are reasonable for $H_2\dot{CO^+}$. The positive shift in g_{μ} , although not observed for $H_2C\dot{N}$, is nevertheless expected for structure (II).

	$A(^{1}\mathrm{H})/\mathrm{G}^{\mathrm{a}}$			g values		
	11	T	iso	11	T	av.
$H_2C\dot{N}$			87.5	_		2.002
H₂CÖ⁺	93	89	90·3	2.025	2.000	2.017
$a G = 10^{-4} T.$						

This identification is supported by the observation that on annealing above 77 K these features were lost as an asymmetric doublet characteristic of HCO grew in with a final intensity equal to that for the 'H₂CO+' radical (equation 1).

$$H_{2}CO^{+} + H_{2}SO_{4} \rightarrow HCO + H_{3}SO_{4}^{+}$$
(1)

This means that whereas HCN⁻ is a strong base,³ H₂CO⁺ is a strong acid even in concentrated sulphuric acid.

(Received, 10th September 1975; Com. 1030.)

¹ E. L. Cochran, F. J. Adrian, and V. A. Bowers, J. Chem. Phys., 1962, 36, 1938.
² M. C. R. Symons, Tetrahedron, 1973, 29, 615.
³ I. S. Ginns and M. C. R. Symons, J.C.S. Dalton, 1972, 185.